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COMPRESSIBILITY EFFECTS ON FLUID
ENTRAINMENT BY TURBULENT
MIXING LAY ERS

SUMMARY / /0 c/?/

Fluid entrainment by supersonic turbulent mixing layers has been
measured on a windetunnel model over a wide range of Mach numbers and
ratios of the densities of the moving and stationary fluids,

The wind~tunnel model consisted of a forward=~facing spike on a
flat-faced cylinder. In the supersonic airstream this geometry generated a
conical region of separated flow bounded by a constant«pressure mixing
layer. By detecting whether or not there was any recirculation at the re=
attachment line, it was possible to supply fluid to the separated region at
the same rate at which it was entrained by the mixing layer. The entrain=-
ment coefficient of the mixing layer could thus be calculated by metering
the fluid supplied.

Supplying both air and helium to the mixing layer, it was found
empirically that all the data could be correlated by the formula

Pi 0.4 y=1 ., 2,-0.67
: .
Cq ® 0-049 (=) (14 X7 M%)

(-]

within + 10 percent. (Symbols are defined in Appendix A.)

Numerical calculations of mixing-layer profiles have been made in
order to allow a comparison of these measurements with the values of the
spreading parameter, ¢, quoted in the literature. Three different laws were
considered for the effect of compressibility on the formula for the eddy
viscosity. One was rejected for yielding profile shapes inconsistent with ex-
periment and the other two gave nearly identical results.

For the case of isoenergetic entrainment of air by air, the only case
for which other data are available, the measurements and calculations reported
have predicted that ¢ increases with Mach number according to the formula

0.2
o'oc(l+32-'—1 MZ) ?

This result falls somewhat below most of the other data available.
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INTRODUCTION

When one stream of fluid flows over another moving at a different
speed, a mixing layer forms at the interface in much the same way as a
boundary layer forms in the flow over a solid surface. Like the flow in
a boundary layer, the flow in a mixing layer is a shear flow and it may
be either laminar or turbulent, according as the Reynolds number is low
or high.

The investigation reported here is concerned with a special class
of turbulent mixing layers in which one of the fluid streams is at rest.
The classic example of this kind of flow is often called the half-jet and
is formed from the separating boundary layer of the flow issuing from a
nozzle into a quiescent gas, as illustrated in Fig. 1, The cases con-
sidered here include some in which the flowing and quiescent gases are
different.

The low speed half-jet flow has been the subject of several analyt-
ical investigations, of which the first was conducted by Tollmien (Ref. 1)
in 1926. The basic features of this flow are

1) the flow is self-similar; the velocity profile
shape is invariant along the layer

2) the rate of increase of the width of the layer
is linear

3) fluid is entrained from the quiescent side of
the layer at a rate which is invariant along
the layer

The analytical treatment requires some empirical assumption
about the relation of the turbulent shear stress to the local velocity
gradient. Various assumptions have been used, all which lead to approxi-
mately the same velocity profile shape. Any expression for the shear
stress contains a constant which the theory leaves undetermined so that its
value must be determined from experiment. This constant appears both
in the formula for the rate of growth of the layer and in that for the rate of
fluid entrainment from the quiescent side. It also appears in the scaling
law for the self-similar profile and is most often determined in terms of
the scale factor which gives the best fit of the measurements to this
profile.

Analyses of the mixing layer in compressible flow require a
further assumption about the influence of the density variation across the
layer on the shear stress. At least three different formulas have been sug-
gested and used for calculations. The empirical constant is not necessarily
invariant and must be determined by a series of experimental measurements




covering the full range of interest of the basic flow parameters such as
Mach number, temperature ratio across the layer, and so on.

On the experimental side, there have been about half a dozen in-
vestigations of the incompressible half-jet since 1926. The values of the
basic constant determined from these measurements agree within about
+ 10 percent.

A summary of the available data for compressible flows has been
published by Maydew and Reed (Ref. 2). The range of Mach numbers repre-
sented extends almost up to M 2 3, There are two significant restrictions
on the scope of the data, however,

a) both the flowing and quiescent fluids are air

b) the flows are all isoenergetic; the total enthalpy
of the flowing stream is equal to that of the
quiescent air,

WIND TUNNEL MEASUREMENTS

Basic Technique

This investigation of turbulent mixing layers was based on measure=
ments of the rate of fluid entrainment from the ®dead-water?® region
adjoining the inner edge. This was in contrast to the commonly-used method
of measuring velocity profiles and fitting them to a theoretical curve. Either
kind of measurement can be analyzed equally well to supply the undetermined
empirical constant in a theoretical treatment of turbulent mixing layers.

Figure 2 is a schematic illustration of the flow geometry used. A
spike was used to create a conical region of separated flow ahead of a flat-
faced cylindrical model mounted in a wind tunnel. The mixing layer con=-
stituted the conical surface separating the "dead-water®” region on the inside
from the supersonic flow on the outside. Gas was supplied to the separated
region from a metered supply outside the tunnel through small perforations
in the hollow spike.

The technique for measuring the rate of fluid entrainment was
similar to that used by Ricou and Spalding (Ref. 3) in their investigation of
fluid entrainment by fully developed turbulent jets. The essence of this
technique is the detection of the condition that the gas supplied to the separated
region exactly matches the amount entrained by the mixing layer. As described
by Chapman (Ref. 4) and others, the flow will adjust itself to the rate of fluid
injection. If too little is injected, the mixing layer will reattach to the body
and some of the fluid in the layer will recirculate back into the separated
region. If too much is injected, the mixing layer will be blown entirely off
the body and some of the injected gas will escape from the separated region



by flowing back along the body under the mixing layer. Thus by detecting
both recirculation of fluid into and escape of fluid from the separated region,
it is possible to adjust the gas supply so that neither occurs and the entrain-
ment by the mixing layer is matched. A pair of Stanton tubes on the face of
the model, installed as described below, was used for this purpose.

In addition to metering the total flow entrained by the mixing layer,
the wind-tunnel model was designed to measure the distribution of entrain-
ment along the layer. For this purpose three discs were mounted on the
spike, as shown in Fig. 2, dividing the separated region into four compart-
ments. By constructing the hollow spike out of four concentric tubes,
each compartment was provided with an individual gas supply.

To measure the distribution of entrainment along the layer, each gas
supply was individually matched to the rate of entrainment from its own
compartment. A pressure measurement in each compartment was used to
set up this condition. A mismatch in any one compartment required in-flow
or out-flow across one of the discs and hence a pressure differential across
this disc, Adjustment of the flow rates, until all the pressures were balanced,
assured the desired matching of injection to entrainment in each compartment,

Model

The basic wind tunnel model is shown in Fig. 3. The model is com-
prised of a spike of approximately 7.4 inches mounted on a 4.22 inch diameter
body forming the altitude and base of a 16° cone. The spike length was chosen
so that the conical displacement surface formed by the mixing layer would be
approximately 20°., The region between the 20° conical tip and the model was
divided into four compartments by three thin circular discs,

In order to detect the differential pressures, a series of pressure
probes were installed along a 10° conical ray from the model tip. In a
similar manner, one thermocouple was installed in each of the forward three
compartments. The thermocouples served as an additional indication that
free stream air was not recirculating into the dead-air region formed by
isolating discs. This measurement was of value when the tunnel recovery
temperature differed greatly from the injected gas temperature.

A pair of Stanton~tubes was mounted on the model face, one pointing
inward and one outward, along a radial ray, When gas recirculated into the
last compartment, the outward facing tube detected a greater pressure than
the inward facing tube. The converse was true when too much gas was supplied
to the mixing layer. When there was no pressure difference across the three
isolating discs and the pair of Stanton tubes, the entrainment requirement of
the mixing layer was satisfied exactly.

The basic three isolating discs were located along a 13° conical ray
angle. Two sets of rings were used to increase the disc angle to 14° or 15°
During the wind tunnel program all three disc sets were used to determine
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the effect of disc size on entrainment rate. In general, the 15° disc set
had a large effect on the entrainment coefficient whereas the entrainment
coefficient was invariant when the small and medium sets were used.

The effect of disc size was most apparent at the low Mach numbers with
the helium injectant. The helium~air mixing layer spreads atsuchalarge
angle that the isolating discs actually protruded into the free layer and
interfered with its growth,

The injectant was supplied to the mixing layer from a series of
holes drilled in the supply tube for each compartment. These holes were
arranged so that the gas distribution from the supply tube increased linearly
with distance back from the tip cone, That is, equal amounts of gas were
supplied per unit cone area.

Gas Supply

During the test program, nitrogen, helium, and sulphur hexafluoride
were injected into the conical dead~-air region, The gas supply rate to the
three forward compartments was measured by a flowmeter system com-
prised of three Fischer-Porter Flowrators and associated plumbing. The
gas supply system is shown in Fig. 4.

Nitrogen was obtained from laboratory supply tanks. Helium was
delivered from an 80,000 SCF tank trucke Sulphur hexafluoride was available
from a bank of cylinders containing liquid SF.

Wind Tunnel

The test program was conducted in two closed circuit wind tunnel
facilities at the NASA Jet Propulsion Laboratory. Tests were conducted at
three Mach numbers in the 21-inch hypersonic wind tunnel (HWT) and at
two Mach numbers in the 20-inch supersonic wind tunnel (SWT). The range
of test conditions (Reynolds number versus Mach number) are shown in Fig. 5.
The range of test variables are given in Table I. Both tunnel stagnation tem-
perature and pressure were varied when possible. The tunnel running con-
ditions were fixed by the heater limit for maximum T; and by the condensation
limit for minimum Ti.

Flow Patterns

Figure 6 is a schlieren photograph of a run in which air was injected
at M = 4.0. The mixing layer is clearly visible in the lower half of the pic-
ture and the beginning of transition is indicated by the change from a thin line
to a fuzzy region growing more rapidly. Transition does not appear to be
complete until the flow passes the first disc, where the rate of spread of the
mixing layer reaches its final value,



TABLE 1

WIND TUNNEL TEST PARAMETERS

Ti/T
M M To(° F) Polcm) e DISC
TUNNEL T C  RANGE RANGE RANGE  GAS SIZE
Sw 1.48 1.1 95 35- 40 . 86 N.H M
T 2. 61 2.1 100 36- 73 .60- .64 N,H,SF, S, M L
Hy 404 3.0  340-820  110-215 .52-1.00 N,H,SF, S. M
T 6.07 4.0  335-690 900 .41- .57 N,H,SF, S, M, L
9.63 4.8 1195 3300 . 58- .60 N s, M

Because the displacement effect on the outer flow is much larger
for the turbulent layer than for the laminar one, the effective cone angle
changes over the transition region. The photograph shows weak shock
waves emanating from the region around the first disc, where the corner
in the effective cone surface is concentrated. This has implications for
the data reduction in that the flow is not strictly conical or self-similar
all the way from the tip.

The effect of the initial laminar run on the entrainment coefficient
can be shown to be small, both by a theoretical estimate and by comparing
the data from the second and third model compartments.

The discontinuity in cone angle, of course, implies a discontinuity
in the flow conditions external to the mixing layer. This is small enough,
however, that the relationship between pressure and stream density in the
external flow is still locally valid. In other words, data from the second
and third compartments can be reduced as if the flow were conical all the
way to the tip.

Tunnel Contamination

Because both wind tunnels were closed circuit facilities, the foreign
gas injectant served to contaminate the flow. Exchange air was pumped into
the tunnel to replace the tunnel flow lost from the high pressure sections.
The exchange air was the only means of controlling the level of the foreign
gas during the test. Samples of wind tunnel air were taken after many
minutes of injecting the mixing gas and were analyzed for foreign gas content.
The steady state level of the helium was found to be 3.3 percent by mass and
the level of the SFy was measured to be 34.6 percent by mass. The effect
of helium contamination on tunnel performance was checked and found to be
negligible whereas the tunnel operation was seriously affected by the SF.
Consequently the 5F, data was not reduced.
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Effects of Changes in Disc Sizes

The purpose of constructing the model so as to allow for the use of
three different disc sizes was to make it possible to obtain high sensitivity in
the detection of axial flow without interfering with the natural development of
the mixing layer. The largest disc size which avoids this interference is the
optimum, since it confines the flow across any disc to the smallest allowable
area. In the absence of any previous use of this technique, a trial-and-error
procedure was the only one available for seeking such an optimum.

It was found in the wind-tunnel tests that all three disc sizes provided
adequate sensitivity. With all three it was possible to detect small enough
axial flows that the individual gas supplies could be repeatedly set to within
the least count of the flowmeters.

As for the lack of interference with the natural entrainment process,
it was found in tests with air injection that data obtained with the small
and medium discs agreed whereas those obtained with the large discs were
significantly different. This is illustrated in Fig. 10 in which all the data
are plotted in terms of the correlating function derived below. Also evident
from this figure is the apparent interference of medium discs with natural
entrainment when helium was injected at the two lowest Mach numbers.

In view of the data correlation shown in Fig. 10 between results
obtained with the small and medium discs, it may be concluded that these
discs did not interfere with natural entrainment and that the data obtained
with them correctly describes the behavior of free turbulent mixing layers.

Estimate of Accuracy

For each data point obtained in this investigation it was necessary to
match the gas supplied to each compartment to the amount entrained by the
mixing layer. At a number of test conditions a measurement of the uncer-
tainty involved in this matching procedure was obtained by repeating it
several times without changing the test conditions. It was found to be of
the order of 43 percent with no significant variation over the range of
experimental conditions.

The accuracy of the computed entrainment coefficients depends on
the accuracies of the measurements of both mass flow, th, and external
mass velocity, Peler

The manufacturer's specification of the flowmeter accuracy is
+2 percent of full scale, which amounts to t+ 4 percent of the average scale
readings in these tests.

The external mass velocity is computed from the ratio of the pressure
measured in the separated region, p., to the tunnel static pressure, p, The

»




inaccuracy in the former pressure is estimated to be about + 3 % which

is much larger than that in the tunnel pressure. It can be seen from

Fig. 7 that the conical-flow equations predict a much smaller value for the
resulting inaccuracy in mass velocity, peue less than +1%. However, as
mentioned above in the discussion of flow patterns, the flow is not strictly
conical, due to the initial laminar flow in the mixing layer. The estimated
error in assuming a true conical flow increases with Mach number from a
negligibly small value at M = 1.5 to about +8% at M = 9,5.

A further source of error in the quoted results is the uncertainty in
the transverse curvature correction, discussed below. Estimating this to
be possibly as large as 50% of the correction yields errors of the order of
10% at M = 1.5 and of 6% at M = 9.5.

The density, p,, in the stream adjacent to the mixing layer is com-
puted, like the external mass velocity, pgue:, from a pressure measurement
in the separated region. As illustrated in Fig. 7 it is affected more strongly
than the stream density by errors in p./py,- The fractional uncertainty in
density ratio is of the order of the uncertainty in the pressure measurement
or about £3%. The uncertainty in the measurement of the temperature
at the inner edge of the mixing layer, T;, is estimated at about +1%,
while the possible error, due to imperfect mixing, is estimated at
about +2%.

These various errors and uncertainties are summarized in Table II
on the following page.

The uncertainty in the parameter plotted in Fig. 10 is thus estimated
to be roughly +5 %, which is consistent with the scatter in the data at any
fixed Mach number.

The possible inaccuracy in the correlated data, after the uncertain-
ties have been averaged out, is thus estimated to be roughly +10%. This

is approximately equal to the inaccuracies found in the more conventional
method of measuring mixing layer growth, using profile measurements.

DATA REDUCTION

Definition of Entrainment Coefficient

The rate, m, at which gas was entrained into the mixing layer from
the dead air region was measured directly by the flowmeter system, for




the first three compartments of the model. The mass entrained per unit
surface area was computed as

o

G = =% (1)

where A denotes the lateral area of the conical frustum included between
the appropriate pair of discs. The cone angle used in the computation of A
was the basic 16° defined by the tangent from the spike tip to the shoulder
of the model face.

A non-dimensional measured entrainment coefficient, c,', was
defined by dividing G by the mass velocity, pgu,, of the supersonic flow at
the outer edge of the mixing layer.

G
cq' = o (2)
e e
TABLE 11
ERROR UNCERTAINTY
MT:I.S MT=9.5 All M

Matching gas supply

to mixing layer scavenging + 3%
Flowmeter measurement

of m i 4% + 4%

External mass velocity < 1% + 4% +1%
Transverse Curvature

Correction + 10% + 6%

Entrainment coefficient Cq + 11% +3%
External temperature T, < 1% + 4% + 3%
Internal temperature T, + 2% +2% +1%
CORRELATION PARAMETER

OF FORMULA (12) +11% +9% + 5%




Computation of the Flow Properties
at the Outer Edge of the Mixing Layer

The mass velocity peu, along the outer edge of the mixing layer
was determined by measuring the cone static pressure. A unique relation
exists for each free-stream Mach number between the ratio of properties
at the edge of a conical surface and the free stream properties, An ex-
ample of this is given in Fig. 7 where the ratio of cone to free-stream
density is presented in terms of the pressure ratio pc/poo.

The static-temperature ratio Te/ T, is also uniquely determined
by the pressure ratio pc/poo and this relationship is also illustrated in
Fig. 7. Since the total temperature is conserved across the conical shock,
the Mach number at the outer edge, M., may be computed from the ratio
Te/Tte'

Note that all these computations of flow properties, external to the
mixing layer, do not require any assumption about the effective cone angle.
The various ratios are determined strictly from a measurement of the cone
pressure and a knowledge of the free-stream Mach number. The effective
cone angle can be derived, also.

The free-stream flow properties were determined from the tunnel
calibration and pressure and temperature measurements in the stilling
section for each run.

Transverse Curvature Correction

It is shown in Appendix A that the equations of motion for a thick
conical mixing layer can be reduced to the same differential equation as
those for two-dimensional flow., There is, however, a difference in the
expressions for the entrainment coefficient. In terms of the solution of the
basic differential equation (35) the entrainment coefficient in a two~dimen-
sional flow is

— £ (= w)

cq = e (3)

whereas in the conical flow it is

Yy
T f( = )

10




It is also shown that an application of Prandtl's (Ref. 5) basic formula
for the eddy viscosity to both mixing layers leads to the relation

o' =20 (5)

and thus defines the ratio of entrainment cocfficients in the two flows
as

0O

Yi
-t (6)
a Yo

gl

As defined in Appendix A, y. and y are the radii of the inner and
Sl i o . . .
mean surfaces of the mixing layer. In a conical flow their ratio is constant
and approximately equal to

b

1

1/ (1 +5—) (7)

where b is the width of the layer. In this flow

::z(—éand c' = ——f(_w) (8)
g 9 o
so that
1+-2 ~140.87Bc (9)
2y. q

1

in terms of the shape parameter B defined in equation (48). The value
of B depends on the Mach number of the external flow and the temperature
ratio across the layer and is given for air and helium injection by the
formulas (49) and (50).

All the measured values of c4' have been corrected for this trans-
verse curvature effect by dividing them by ( 1 + 0.87 B c4' ). The results
quoted in the following discussion thus apply to two-dimensional flows.

All previous measurements quoted in the literature are for two-dimensional
flows and thus directly comparable.

11




EXPERIMENTAL RESULTS

Variation of cq with Temperature
Ratio Across the Mixing Layer

In Fig. 8 the entrainment coefficient cy has been plotted versus
the temperature ratio across the mixing layer To/Ti. There are three
sets of data, each one corresponding to a fixed value of the Mach number.
Two of these sets are for air entrainment and the other for helium.

The straight lines shown represent the best fit which can be ob-

tained keeping the slopes equal. They represent expressions of the form

cq & (T,/T) 0.4 (10)

and fit the data quite well,
There is no systematic influence of Reynolds number, which varies

over a range of about 3 to 1, on the results. None is expected for a fully
developed turbulent mixing layer.

Correlation of all the Data for Air and Helium

In Fig. 9 the variation of ¢, with Mach number has been isolated
from the effects of temperature ra%io by plotting Cq (Ti/Te) 0.4 versus the
Mach-number parameter T_/T ;,. All the data for air and helium are
represented.

The best straight-line fit to the air data is

T 0.4 0.67

q : T, T (11)

The helium data can be fitted with a parallel straight line displaced by an
amount corresponding to the ratio

-

' molecular weight of helium
molecular weight of air

i
.

-] 0.4
J

12




This means that all the data for both gases can be represented by the
formula

- = 0.4 - - 0.67

P, _
c_ =0.049 — 1+X—1M2.[ (12)
q P 2 e

- - - -

The degree to which this expression fits the data is illustrated in
Fig. 10 where the parameter

has been plotted versus Mach number. Except for some measurements
obtained with discs which were too large, all the data fall within £+ 10%
of the constant 0.049.

REVIEW OF MIXING LAYER THEORY

Basic Equations

The following assumptions may be made in the theoretical investi~
gation of the particular class of mixing layers of interest in the present
research:

(a) zero pressure gradient along the layer

(b) zero velocity along the layer at the inner edge

(c) non-reacting perfect gases

(d) turbulent Prandtl and Lewis numbers equal to unity

Expressing the turbulent terms in terms of the eddy-viscosity
concept, we may write the governing equations for two-dimensional
flow as follows:

83x— (pu) + % (pv) = 0 (continuity) (13a)
oJu ou _ 0 ou
pu 5= + pv 3y © By (pe -5}—;) (momentum) (13b)

13




oc dc 0 dc . .

pu = + pv 5y = 3y (pe -53’—) (diffusion) (13c)
oH oH 9 oH ‘

pu X + pv g}; = -5? (P€ W ) (energY) (13d)

Similar equations for axisymmetric flow are discussed in Ap-
pendix B.

Solutions of the Diffusion and Energy Equations

Inspection of the last three of the set of equations above shows that
¢ and H must be linear functions of u. These functions must be written
to satisfy the boundary conditions;

at the inner edge

u =20 c =1 h =H =c, T. (14)

at the outer edge

2

u = u c =0 H‘—"~H=CT(1+J———LM)
e e Pe e 2 e
(15)
Therefore,
- u
C—l—'u— (16)
e
u
H = Hi + (He - Hi)ﬁ; (17)

Noting that H = h + 1/2 uz, the static enthalpy profile may be written

on

L opy-l o2y w
1=+ Y5 Me)ue

-

‘J‘| L

h
h
e

(1]

(18)

_y=1 M2 ( 2

2 e )

u
u
e

14




The molecular weight and specific heat of the binary mixture are

c cp - cp Cp - Cp - 9
P - 14+ 2 € c=1+ L L | (19)
C C C ! u
Pe Pe Pe 'L eJ
and
(LS Mo — My Mme = my T u )
_772':1"' m. c=1+ m. 11—5_ é (20)
i 1 e j
L
Writing
“p; T °p
Ac ¥ o= i e (21)
P c
Pe
and
m, - m,
am” = — (22)
i
we may express the density ratio
* p ReTe m Cp he
PP RT “wm, o ® (23)
e ) P,
1+ ac (1 = u*
p ( )
Cp T1 T cp Ti 5
i 1 i y-—1 2 k -1 2 o« Kog
gt l- — tis— M L—Z M“u [1+am (1-u™)]
P, ¢ | P, ¢© ' i
; L d
where u™ = u/u




Eddy Viscosity Formulas

Before the momentum equation can be integrated to obtain the
velocity profile, the variation of ¢, the kinematic eddy viscosity co-
efficient along and across the layer must be known. For incompressible
flow, Prandtl’s (Ref. 5) formula

€ = kbue (24)

is generally accepted. Here b is a measure of the width of the layer
and k is a universal constant. Since, as will be shown later, the
growth of the layer is linear in x, this may also be written

€ =2 ¢ u X {25)

The variation of ¢ across the mixing layer, at a fixed value of x,
is nil,

In compressible flows, where the density varies across the layer,
it has been suggested that ¢ may also vary. At least three formulas have
been suggested, which may be written

N
pe
€ = € u —
o]

X (26)

L3

with

N =0, 1, 2

Z
]

0 preserves the invariance of ¢ across the layer and
has been used by Crane (Ref. 6) and others.

N = 1 corresponds to an invariant dynamic viscosity co=
efficient and has been suggested by Ferri (Ref. 7).

N = 2 allows a convenient transformation by which the
equations for compressible flow may be reduced to
incompressible form and has been suggested by
Ting and Libby (Ref, 8).
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Transformation of the Equations of Continuity and
Momentum to an Ordinary Differential Equation

The pair of equations (13a) and (13b) may be reduced to an ordinary
differential equation, defining a self-similar flow, as follows.

The new independent variable is
=X |
n=0= (27)

where o is an undertermined spreading parameter. The rate of growth of
the layer is thus linear with x.

The new dependent variable is a reduced stream function

f = 2 oy (28)
p u X
e e
where
_ 9y _ 9y

so that the continuity equation is satisfied.

The velocity components in terms of the new variables are
given by

Pele af

pu = —5— an (30)
pu
e e daf

PV = —S5 (Tlg.;]“f) (31)

and the momentum equation may be written

Q-lﬂ-
=l Lad

=
p

|n.
"""
o]
o
. |
[}
lalimans 4
el
| W §
2
t
ot
|cL
-
— 3
H
(o]

(32)

where 6 defines the (constant) width of the layer in the similarity variable 7

5 = ocb (33)
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It is convenient to choose ¢ so as to obtain an equation which is
free of all empirical constants. If

¢ = oo (34)

the momentum equation becomes

d }-pe df.l d ’fpe "N-1 e ]
— = + — — L =0
P dn P

]
L 4 - -

"
=;
L—d

5=
Q-aIQa
3|+

(35)
which for incompressible flow reduces to

2 ££0 4 M = 0 (36)

This last equation has been solved by Gbrtler (Ref. 9) and yields the
standard velocity profile for the turbulent mixing layer in incom-
pressible flow.

The boundary conditions at the outer and inner edges of the layer
are

! () = 2 £ (=) =0 (37)

A thi rd boundary condition is required which serves to locate the origin
of the coordinate system. We choose here to locate it on the dividing
streamline so that

£(0) = 0 (38)

Integration of the Momentum Equation

The momentum equation (35) may be integrated for all values
of N by an iterative procedure due to Chapman (Ref. 4).
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The equation is written in the form

- <N=1 r -
d e a4 Pey
dn p dn P - aN-1
e - — = -2 £ f (39)
"p. "N=l il B e
Pe a  Pey
P dn p
which integrates immediately to yield
r - N-— 1 - -
‘P p
e d e
— — f! =2c¢, F 40
P dn p 1 (40)
where
P ]
| e N - ]. i
Fxexpl| = 2(p™) f dn ; (41)
%
A second integration yields
1 P "
* = = & = sy N =1
u 7 5 f < ‘S (™) Fdn + <, (42)
0

The solution is obtained by starting with an assumed profile uo:k(n)
from which

f=2 ‘S pFu™ dn (43)

can be obtained directly, using the formula (23) for p*(u™). This automatically
satisfies f(0) = 0. The first approximation to the correct profile is then com=
puted as

- -

N , .M
E N"'l ) b N-nl ) i B3 :
ul("'l) = ¢ S (p") exp 5«45 (r™) S P uy dndn .d’ﬂ‘*'CZ
0 ? 0 0

(44)
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with ¢ and ¢, calculated to give
u* (ec) =1 u¥* (—g = 0 (45)

This process is repeated starting with uj* (n) and each successive approx-
imation until the difference between two successive profiles becomes
negligible,

Solutions for the case N = 2 can also be obtained by simple quadratures
from the incompressible solution, using the transformation of Ting and Libby
(Ref, 8).

The conditions required to specify a solution all appear in the formula
(23) for p*. They are

a} Mach number of the external flow Me

o

temperature ratio across the layer Ti/ Te

e}

)
) specific heat ratio of the two gases A Cp
)

[N

molecular weight ratio of the two gases AmM™

Solutions have been obtained on an IBM 7090 computer for a number of sets
of these conditions covering the range of the experiments.

Results: Velocity Profiles

The profile shapes obtained using different values of the exponent N
in the eddy-viscosity formula (26) exhibit increasing differences as the Mach
number increases and compressibility effects become pronounced. On the
basis of these differences particular values of N may be accepted or rejected
as being compatible with experimental evidence. :

In fig. 11 the velocity profiles calculated with N =0, 1, 2 are com~
pared with the measurements of Chrisman (Ref. 10) taken at M = 2.76 in
an isoenergetic flow of air into air. This is the highest value of M for which
data is known by the authors to be available.

In order to compare the various profile shapes they have been drawn
to a common scale which corresponds to that of the standard solution for
incompressible flow., Scaling has been accomplished by applying a linear
transformation,

TT:an+b (46)

to the n -coordinates of the various solutions for M = 2.76. The coefficients
have been determined by plotting n (M = 2.76) versus n (M = 0} for equal
values of u/ue. A linear fit to the points in the region 0.4 < u/ue < 0.7 then
was used to fix a and b.
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Referring to Fig. 11 we note that the compressibility effects
on profile shape are not very large at this Mach number. The exper-
imental points favor the profile corresponding to N = 0 but fit the
incompressible profile almost equally well, The profile for N = 2
is far enough from the data that the corresponding eddy viscosity
formula of Ting and Libby (Ref. 8)

5 2
€ Te_u fﬁ‘ X (47)
0 e} p |

must be regarded as inconsistent with these measurements.

Results: Shape Parameters

Further discussion of compressibility effects on mixing-layer
profiles is most conveniently accomplished by introducing a suitable
shape parameter, since an atlas of profiles for various values of Mg
and T;/ Te would be cumbersome; even more so if binary mixing
were to be considered.

A choice of shape parameter which is useful in comparing our
data with other measurements is

Pee db 26

o v, dx T(—)

(48)

This parameter essentially describes how fast the mixing layer must
grow in order to absorb the rate of fluid entrainment. Its value depends
on Mg, Ti/Te, and the molecular weight and specific-heat ratios of the
two gases which are mixing across the shear layer,

Because the approach of the velocity profile to zero at the inner
edge and ue at the outer edge is asymptotic, the definition of the width
b, is somewhat arbitrary. The choice which has been made here
locates the edges at

M - 0.05and X =0.95
u u

e e

The spacing on the n scale between these two profile points defines
6 for any solution of the equations of motion,

Values of B have been computed from solutions of the differential
equation (35) with both air and helium as the scavenged gas. The ranges
of Mach number and temperature ratio covered are somewhat larger than
those of the experiments. The values obtained with N = 0 and N = 1 were
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found to agree quite well with each other whereas those for N = 2 were
significantly different. Because of this and the profile-shape results,
illustrated in Fig., 11, only the values for N = 0 and N = 1 are presented.

For air blowing over air the results of about 20 solutions have
been correlated within + 5 percent by the formula

0. 51 0.27
B =5.74 L te (49)

and this result is plotted in Fig. 12, illustrating agreement of the solutions
for N =0 and N = 1,

For air blowing over helium the results of about 20 solutions have
been correlated within # 10 percent by the formula.

- . 0.45 - - 0.27
Ti : Tte
B = 16.2 T ‘ ’ T (50)
e e

COMPARISON OF RESULTS
WITH OTHER MEASUREMENTS

All the other data on turbulent mixing layers have been obtained
by measuring profiles; velocity profiles have been measured with pitot-
static tubes; and density profiles have been measured with interferometers.
These profiles are then fitted to theoretical profiles and the scaling factor
is used to determine the spreading parameter ¢. In order to compare these
results with ours we have developed a method for determining values of @
from measurements of the entrainment coefficient cqu

Spreading Parameters Determined from Profiles

The common practice in deducing values of ¢ from profile measure-
ments is to adjust the scale of the appropriate theoretical curve until the
best fit with the data points is obtained.

Rosler (Ref. 11) has shown that equally good results may be obtained
by simply measuring the rate of increase of the mixing layer width. If the
experimental measurements of b versus x are fitted to a straight line,

b= m{x+ x,) (51)
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the spreading parameter is simply

_ 5
o = I—Tl— (52)

where & is the theoretical profile width on the n scale.

The choice of theoretical profile to which the measurements may be
referred is somewhat arbitrary. Given the appropriate binary mixture,
Mach number, and temperature ratio across the layer, three different
values of & are available from the solutions with N = 0, 1, 2, discussed
above. Further, as illustrated in Fig. 11, the solution for incompressible
flow can be fitted quite well to measured profiles up to at least M, = 3, so
that a fourth value of & is available. The values of o quoted in the
literature are in fact based on this last choice and are obtained by fitting
the measured profiles to the basic theoretical solution for incompressible
flow, for which 6 = 2.56. To distinguish values of o referred to this
profile from the values which appear in the equations for compressible
flow, they will be denoted here by ¢.

Relation Between Rate of Growth
and Entrainment Coefficient

The measurements we have obtained of entrainment coefficients,
c, imply rates of growth of the various mixing layers which may be
calculated by means of the shape parameter, B, defined in equation (48).
In any specific case

db
E—x- =B Cq (53)

where B is evaluated for the appropriate flow conditions. It follows that

« _ 2.56
o* = £ (54)
q

Result for Incompressible Flow

Equation (12), which correlates the results of our measurements,
yields for Mg = 0 and T;/T, =1,

C z 0.049
q
The corresponding value of ¢* given by (54) is

0'029
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The values obtained from velocity-profile measurements range from
op° = 11 measured by Liepmann and Laufer (Ref. 12) to oy" = 13.5
measured by Reichardt (Ref. 13). The generally quoted UO" =12
has been obtained by fitting the measurements to the older theoretical
profile of Tollmien (Ref. 1) which differs slightly from the solution
of equation (36).

A possible explanation of these discrepancies lies in the dif-
ferent geometrical situations. Liepmann and Laufer's measurements
were obtained in a two-dimensional flow whereas Reichardt's were
obtained at the edge of a round jet. There may be a transverse-curva-
ture effect associated with the effectively wider (around the perimeter)
low-speed and narrower high-speed region of the mixing layer in the
axisymmetric case.

The measurements reported here were also obtained with axially
symmetric geometry. The situation was "inside-out" with respect to
Reichardt's since fluid was scavenged from the inner side of the mixing
layer. It turns out that the value o43™ = 9 obtained here is as much
below the two-dimensional (ro* = 11 as Reichardt's op* = 13.5 is above
it. Since there is no other data on transverse-curvature effects of this
kind, and any theory necessarily contains an empirical constant, it is
not possible to pursue this discrepancy further.

Results for Compressible Flow

Previously reported measurements of compressibility effects on
turbulent mixing-layer growth have been limited to the special case of
isoenergetic flow of air into air. Here Ti/Te = Tte/Te and Equations
(11) and (49) may be written

~ 1.07
cq = 0.049 (Te/Tte) (55)

0.78

B = 5.74 (Tte/Te) (56)

Substitution of these expressions into (54) yields a simple formula for o

o* = 9.1 (T, /T )" (57)
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for this special class of flows. In order to isolate the compressibility
effects from the uncertainties in the result for incompressible flow the
comparison of other data will be made with the function 12¢ * /o 0 whose
value at M = 0 is the generally quoted o* = 12. A plot of this function
versus Mach number is shown in Fig. 13,

Also shown in Fig. 13 are values of ¢* deduced from measurements
reported in the literature. The results of Bershader and Pai (Ref, 14)
and of Gooderum, Wood, and Brevoort (Ref. 15) were obtained by compar-
ing interferometer measurements with theoretical density profiles and are
quoted as published. The result of Chrisman (Ref. 10) has been derived
from his measurements of velocity profiles as plotted in Fig. 11. The
measurements of Maydew and Reed (Ref. 12) have been reduced to values
of ¢ by the method outlined in Appendix G, which allows for the conical
growth of the mean surface in the mixing layer as well as the increase in
its Widtho

As shown in Fig. 13, all measurements of o* using profile measure=
ments in supersonic flows lie above the curve computed from our measure-
ments of entrainment. No explanation for this discrepancy has been estab-
lished. Part of the difficulty may be in the translation of the entrainment
data into a curve o¢*, which involves a theory as yet unchecked by experi-
ment. The theoretical result for the shape parameter B is plausible be~
cause the predictions of the two theories with N =0 and N =1 agree. A
conclusive check on the transformation from entrainment to ¢* could only
be obtained from a simultaneous measurement of velocity profiles and
fluid entrainment.

Finally, Fig. 13 includes a curve which describes the variation of
¢* which can be developed from the special solutions for the mixing layer
profiles which apply when N = 2, As noted above, the assumption N = 2
in the eddy-viscosity formula (26) allows the equations for compressible
flow to be reduced to incompressible form by the application of a Howarth-
Dorodnitsyn transformation in Appendix D. This transformation is used
to develop a very simple formula for the effect of compressibility on cqs
namely

q 9, e te i (58)

for the injection of air into air.

Now for the particular case of the isoenergetic flow of air into air
the variation with Mach number of the shape parameter B obtained from
our numerical solution for N = 2 is

w 0.75
r Tte :

T
e

B = 5.87

(59)
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only slightly different from the result (56). The corresponding result for
variation of ¢" is, therefore,

- 0.25
£ i T
o - te
o7 = ! - (60)
0 L e i

as shown in Fig, 13. The difference from the result (57) based on our
measurements is negligible,

L)

CONCLUSIONS

1. A new windetunnel technique has been developed by means of which
the fluid entrainment rates of turbulent mixing layers may be measured
directly,

2. Entrainment of both helium and air over a wide range of conditions may
be correlated with only two parameters. One is the Mach number of the
external stream and the other is the density ratio across the mixing layer.
All the measurements obtained fit the formula,

- a0,4 - 4 —=0.67
Py ! -1 2
c =0,049 © 2 | 1+ Y22 M“° (12)
4 | Pe 2 ¢

within %+ 10 percent.

3. In order to compare direct measurements of fluid entrainment with the
measurements of spreading rate found in the literature, some information
about the structure of the mixing layer is necessary. It has been shown that
the information required may be simply expressed as the value of a shape
parameter B, defined by equation (48).

4. Values of B for given flow conditions may be found by integrating the
equations of motion for the flow in the turbulent mixing layer. Such integra-
tions have been performed with three different formulas, for the variation
of eddy viscosity, across the mixing layer, corresponding to N =0, 1, and 2
in the expression

5“—'-'601,1 —E X (26)
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The results obtained with N = 0 and N = 1 agree with each other but differ
from those with N = 2, The latter value gives profile shapes which be-
come more inconsistent with measurements as the Mach number is in-
creased; the corresponding values of B have therefore been disregarded.
With N = 0 and 1 the results for air and helium taken separately may be
correlated by using the same parameters as for the entrainment coef-
ficient cq.

5. Values of the spreading parameter o for the isoenergetic entrainment
of air by air have been computed from the measurements of cy and the
calculations of B, When these are plotted versus Mach number they fall
somewhat below most of the measurements reported in the literature.
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Figure 6. Schlieren photograph of air

injection at Moo = 4,
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APPENDIX A

Symbols

width of mixing layer

shape parameter defined by equation (48)

mixing ratio by weight of foreign gas

specific heat at constant pressure
two-dimensional entrainment coefficient

conical entrainment coefficient

reduced stream function, defined by equation ( 28)
mass flow per unit area

specific enthalpy

total enthalpy, h + %—uz

constant in the eddy-viscosity formula (24)
entrained mass flow rate

molecular weight

Mach number

wind~tunnel Mach number

exponent of the density ratio in the viscosity law
pressure

temperature

total temperature

velocity component parallel to the mainstream in the mixing layer

velocity component perpendicular to the mainstream in the mixing
layer

coordinate parallel to the mainstream

coordinate perpendicular to the mainstream
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Y ratio of specific heats

6 width of the mixing layer expressed in terms of similarity variable, n
€ eddy viscosity

€ constant in the evaluation of eddy viscosity

N similarity variable, ¢

p density

o mixingwelayer spreading parameter in twoedimensional flow

ot mixing«layer spreading parameter in axisymmetric flow

o mixing~layer spreading parameter referred to the theoretical profile

for incompressible flow

Y stream function

Subscripts

o0 freestream value

c conessurface value

e at the outer edge of the mixing layer
i at the inside edge of the mixing layer
Superscript

* normalized quantity by reference to the outer edge of mixing layer
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APPENDIX B

Transformation of the Equations of Motion for a
Conical Mixing Layer to Two=Dimensional Form

Using the same assumptions as in the statement of the system of
equations (13), the equations of motion for an axisymmetric turbulent
mixing layer may be written

) )

3= (puy) + 3y (pvy) =0 (B.1a)
du ou 1 o 2]

AR NS AR A2 (5. 16}
dc 9c _ 1 3 dc

u - + V —— e € —— B.IC

A RS S AL (B.1c)
9H OH _ 1 9 9H

pu '5-)—{- + pv -6‘37 = ;- W(pe y -5-}7 ) (B.ld)

As in the twowdimensional case, the enthalpy, H, and mixing ratio, c,
may be expressed as linear functions of the velocity, u. The momentum and
continuity equation may be combined into a single ordinary differential equa=
tion, defining a selfesimilar flow, by introducing a similarity variable and
stream function as before,

The similarity variable is written
n= o L (B.2)

where y is the transformed radial coordinate

;:3 X ay (B.3)
(o] -

and y_ is the radial coordinate of the mean surface in the layer, The
stream function is written

Yy x pu
o] e e
= = =< £ (n) (B.4)
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and the continuity equation is satisfied by writing

oy _ o _

3y = PUY : I S T PVY (B.5)
The velocity components in terms of the new variables are given
by
p u
. ee df
pu = > an (B.6)
pu Y, T =
e e o) af .
pv = Ao -;’— ) —Cm - 2f J (B.7)
In particular, the entrainment coefficient
(pv), y £ ( -
Cc 1 - 1 - —— _9 ———-—r-ﬁ--( 00) (B.8)
9 Pele A T

where vs is the radial coordinate of the inner edge of the mixing layer.

As in the two~dimensional case, it is necessary to know the be-~
havior of the eddy-viscosity coefficient before the momentum equation can
be written. For this purpose we postulate that the turbulent transport
phenomena which define ¢ are essentially determined by the local flow
conditions, and on this basis are not affected by the transverse curvature
of the flow, Thus we write

" N
e,
e = k — bu (B.9)

P e

[

with b again the local thickness of the layer and postulate that the value
of k is the same as in the two-dimensional flow.

The momentum equation transformed to an ordinary differential
equation is then

d | Pe daf !
dn | p dn

i
|
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(B.10)

In order to obtain an equation of the form (35), it is necessary to
make an approximation, If the thickness of the mixing layer is small
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compared with the radial coordinate of the mean surface, the term
(y/y,)“ varies only a small amount on each side of unity. We therefore
equate it to unity and neglect its variation. An equation identical with
{35) is then obtained if

L
ZK§

o =

(B.11)

A comparison of this expression with the corresponding formula (34)
for the two«dimensional flow shows that

o = 20 (B.12)

or that the rate of spread of the conical layer is half that of the two-
dimensional layer.

The flow in a mixing layer whose mean surface is a cone is thus
similar to that in a two~dimensional layer, since it is governed by the
same differential equation (35). Calculations or measurements obtained
for either geometry may be applied to the other by use of the transforma-
tion developed here. In particular, the ratio of entrainment coefficients in
the two flows is

-4 = L (B.13)
q

0
<
e}
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APPENDIX C

Correction of Mixing~Layer Growth Measurements
Obtained in a Round Jet

The measurements on turbulent mixing layers reported by
Maydew and Reed (Ref. 2) were obtained at the edge of a round jet ex~
hausting into still air. In their discussion, these authors treat the
data as if they had been obtained in a two=-dimensional flow. This
assumption is good if

(2) the mixing layers are thin compared with the
diameter of the jet

b) the mean surface of the mixing layer is cylindrical
! g lay y
(i.e., does not increase in diameter)

Condition (a) is reasonably well satisfied near the exit of the nozzle from
which the jet flows. Examination of the data shows, however, that a
conical spread of the jet begins immediately from the nozzle exit so that
condition (b) is not satisfied.

The effects of this conical spread on mixing layer growth may be
described qualitatively as follows. Fluid entrained from the still-air
region surrounding the jet is absorbed not only by a growth in the thick-
ness of the mixing layer, but also by an increase in its lateral dimensions,
or jet perimeter. Thus the rate of increase of the thickness is less than
it would be if the flow were two-dimensional, or axisymmetric with a
constant perimeter, if the entrainment rate remains fixed.

The transformation developed in Appendix B shows that the
assumption of a fixed entrainment rate is a good one, since for these
layers (Yi/Yo = 1) equation (B.13) states the entrainment rates of conical
and two~dimensional layers are identical

°q = Cq' (C.1)

An approximate correction to the results published in Ref. 2 may
be calculated by assuming that this result holds in the conically divergent
flow from a round nozzle. In such a flow the equation of the mean surface
of the mixing layer may be written

Yo = €1 + c, X . (C.2)
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and the total fluid entrained up to station x is, for a thin layer,

2T Pele Cq S Yo dx

= 27 Pl X cq (o:1 + %sz) (C.3)

The total quantity of entrained fluid carried along by the mixing
layer at any station is proportional to the local thickness b! and the
perimeter 27y, In terms of the shapesparameter B defined by equa=
tion (48) we may write

= 2T t
o= g opue B (e F ¢y %) (C.4)

Equating this to (C.3) and solving for b' we obtain

c +—1-c X
b! - __1____2__2___ chx (C.S)

c1+ Cy X

Now in two~dimensional flow, equation (53) shows that the mixing layer
width b grows according to the equation

b = Bc_ x (C.6)

If we assume, then, that the value of B in the flow of the round jet is the
same as in the twoedimensional flow, we can reduce the measured values
of b? to equivalent twomdimensional thicknesses by computing

b = 1 b! (C.7)

Note that for a conical flow starting from a pointed nose this expression
becomes

b = 2b? (C.8)

which is exactly equivalent to the transformation of Appendix B, if the
mixing layer is very thin,

The correction (C.7) has been applied pointe~by«point to th%‘ b?
measurements of Ref. 2 and values of the spreading parameter o  have
been obtained from plots of b against x.



APPENDIX D

Application of the Howarth«Dorodnitsyn Transformation
to Mixing Layers in Compressible Flow

As noted in the review of mixing layer theory, use of the value
N = 2 in the formula (26) for the eddy=~viscosity coefficient allows the
basic differential equation (35) to be transformed to the incompressible
form (36).

The required transformation is

pe

where p, is the density of the moving stream. With this transformation
we obtain the equation

2
20 &5 4 dé = 0 (D.2)
4y ay

if the spreading parameter is chosen to be

1
= Iy (D.3)

as before. The transformed boundary conditions are

1 (+w) =2 £ (mow) =0

and define the solution of (D.2) corresponding to a mixing layer in incom-=-
pressible flow.

Since f (= o) is thus unaffected by compressibility, any such effects
on the entrainment coefficient

f (=)
must appear due to changes in o. No information about this can be

obtained from the transformation.

A possible method of proceeding with this theory is to borrow from
the results of the corresponding theory for the fully developed round jet.

Boynton (Ref. 16) has correlated jet spreading data in a form equivalent
to writing

e
o e NTge T /Tg
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Here the factor N Ti7Te was deduced from the transform

ation by a
ing a momentum conservation law. The remaining factor N TteaTe was

obtained as an approximate fit to data obtained at two Mach numbers.

ly -
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